报告名称:Constructions of complementary sequence sets and complete complementary codes by 2-level autocorrelation sequences and permutation polynomials
报告专家:王子龙
专家所在单位:西安电科技大学
报告时间:2021年12月2日9:00
报告地点:腾讯会议(611-836-340)
专家简介:王子龙,男,西安电子科技大学教授,博士生导师,综合业务网理论及关键技术国家重点实验室副主任。1982年12月生于河南郑州,分别于2005年、2010年获得南开大学、北京大学数学学士、博士学位,其中2008-2009年在加拿大滑铁卢大学电子与计算机工程系进行博士生联合培养。长期从事序列设计、密码学和信息安全等信息和数学的交叉领域的研究工作,先后解决了序列设计领域多个国际知名的公开问题,特别是在非周期相关的互补序列构造方面提出了开创性的方法。近年来发表学术论文20余篇,主持或参与国家自然科学基金5项,获得省部级奖科研奖励一项,2019年获得中国电子学会“信息论青年新星奖”。
报告摘要:In this talk, we investigate the paraunitary (PU) matrix method to construct complementary sequence sets and complete complementary codes by Butson-type Hadamard matrices. By taking the algebraic structure of Butson-type Hadamard matrices into consideration, we obtain the explicit representation of the so-called \delta-linear terms and \delta-quadratic terms, which avoid the heavy computation from the basis of Kronecker-delta functions. From this representation, we have first showed a theory linking complementary sequence sets of p-ary sequences and the generalized Reed-Muller codes proposed by Kasami et al.. These codes enjoy good error-correcting capability, tightly controlled PMEPR, and significantly extend the range of coding options for applications of OFDM using p^n subcarriers. Secondly, we discover an extremely fascinating hidden connection between the sequences in CSSs and CCCs and the sequences with 2-level autocorrelation, through the trace function and permutation polynomials over finite fields, which are two completely separate fields in the literature for more than 7 decades.
邀请人:郑大彬
(审核:郑大彬)