报告名称:A complete characterization of the APN property of a class of quadrinomials
报告专家:李康荃
专家所在单位:国防科技大学
报告时间:2021年4月19日上午:10:00-12:00
报告地点:英国立博官网中文版201学术报告厅
专家简介:李康荃,国防科技大学博士研究生,博士期间在挪威卑尔根大学联合培养一年(2019.11-2020.11),导师Tor Helleseth院士;研究方向为编码密码理论及其应用,近年来在密码函数设计与线性码设计等领域做出了⼀系列突出成果,代表性成果发表在国内外重要学术期刊《IEEE Transactions on Information Theory》、《Designs, Codes and Cryptography》和《Finite Fields and Their Applications》等上。
报告摘要:In this talk, by the Hasse-Weil bound, I will give the necessary and sufficient condition on coefficients a_1,a_2,a_3 inF_{2^n} with n=2m such that f(x)=x^{3\cdot2^m}+ a_1x^{2^{m+1}+1}+a_2 x^{2^m+2}+a_3x^3 is an APN function overF_{2^n}. The result resolves the first half of an open problem by Carlet in International Workshop on the Arithmetic of Finite Fields, 83-107, 2014.
邀请人:李念
审稿:郑大彬