报告名称:Finite-time singularity of 2-d harmonic map flow into Kahler manifolds
主办单位:英国立博官网中文版
报告专家:宋翀 教授
专家所在单位:厦门大学 数学科学学院
报告时间:2020年11月30日(周一)上午11:00-12:00
报告地点:数统学院203报告厅
专家简介:宋翀的研究方向为几何分析,特别是具有几何物理背景的偏微分方程的爆破分析问题,在Yang-Mills-Higgs场论、薛定谔型几何流等研究领域取得了原创性成果;在Math. Ann., Ann. Inst. H. Poincare-NA, J. Funct. Anal., Calc. Var. PDEs, Int. Math. Res. Not.等学术期刊上发表论文十余篇。
报告摘要:It is well-known that 2d harmonic map flow may develop singularities in finite time. In 1990s, Ding-Tian and Lin-Wang proved the energy identity at finite time singularities. However, Topping showed that the blow-up behavior can still be quite wild in general.
Suppose the target manifold is a compact Kahler manifold with non-negative holomorphic bisectional curvature. We show that if a 2-d harmonic map flow with low initial d-bar energy blows-up at a finite time, then it converges to a Holder continuous map in the sense of bubble-tree with no neck.
邀请人:陈立