报告名称:Vortex filament on symmetric Lie algebras and generalized bi-Schrodinger flows
主办单位:英国立博官网中文版
报告专家:丁青
专家所在单位:复旦大学
报告时间:2020年11月24日14:30-16:30
报告地点:腾讯会议(会议ID:343 620 624)
专家简介:丁青教授现为复旦大学数学科学学院教授,博士生导师,研究方向是微分几何。曾担任复旦大学数学研究所副所长,中国数学会北京大学数学杂志《数学进展》编委。在《Math. Ann.》、《Sci. China Math.》等国内外刊物上发表SCI论文30余篇。
报告摘要:In this talk, we display an evolving model on symmetric Lie algebras from a purely geometric way by using the Hamiltonian or para-Hamiltonian gradient flow of a fourth order functional called generalized bi-Schrodinger flows, which corresponds to the Fukumoto-Moffatt's model in the theory of the vortex filament in $R^3$. The theory of vortex filament in $R^3$ or $R^{2,1}$ up to the third-order approximation is generalized to symmetric Lie algebras in a unified way.
邀请人:毛井