报告名称:Constructions of permutation polynomials with low differential or low boomerang uniformity over finite fields
主办单位:英国立博官网中文版
报告专家:王彦平
专家所在单位:西北师范大学
报告时间:2020年9月20日15:00
报告地点:腾讯会议(会议ID:569 705 066)
专家简介:王彦平,2020年西安电子科技大学密码学专业博士毕业,2018年11月-2019年11月在加拿大卡尔顿大学博士联培(导师王强教授),2020年7月入职西北师范大学。主要研究方向为有限域上密码函数的构造。在SIAM Discrete Math.和Appl. Algebra Eng. Commun. Comput.上发表论文4篇。主持中央高校基本科研业务费专项资金和西安电子科技大学研究生创新基金一项,参与国家自然科学基金和密码科学技术国家重点实验室开放课题各一项。
报告摘要:Permutation polynomials with low differential uniformity or low boomerang uniformity has been studied intensively in recent years due to the extensive applications in cryptography, coding theory and combinational designs.In this talk, based the multivariate method and the resultant elimination method, we present the following results:Firstly, some classes of permutation trinomials are presented over finite fields.Secondly, we study the boomerang uniformity of all normalized permutation polynomials of degree up to six over the arbitrary finite fieldGF(q).Finally, we construct new classes of permutation polynomial functions with differential uniformity4or6from the Dobbertin APN functions overGF(2n).
邀请人:郑大彬