报告名称:Empirical Likelihood Test for High Dimensional Covariance Matrices
主办单位:英国立博官网中文版
报告专家:张荣茂
专家所在单位:浙江大学
报告时间:2020年7月17日10:00-11:00
报告地点:腾讯会议(291 920 480)
专家简介:浙江大学数学学院教授、经济学院与数据科学中心兼职教授、闽江讲座教授,浙江大学统计所所长,浙江省现场统计研究所副理事长。2004年在浙江大学获得博士学位,2004年7月-2006年6月在北京大学从事博士后研究,2006年至今在浙江大学工作,多次访问香港科大、香港中文大学和伦敦政治经济学院。主要从事非平稳时间序列和高维空间数据的理论与应用研究,已发表SSCI/SCI论文40多篇,发表的杂志包括Ann. Statist.,J. Amer. Assoc. Statist.,J. Econometrics等。2015年获浙江省杰出青年基金,主持国家自然科学基金和省部级基金项目多项,现任J. Korean Statist. Soc.(SCI期刊)和Intern. J. Math. Statist.的副主编。
报告摘要:Testing the structures and equality of covariance matrices is of importance in many areas of statistical analysis, such as micro-array analysis and signal processing. Conventional tests for finite-dimensional covariance cannot be applied to high-dimensional data in general, and tests for high-dimensional covariance in the literature usually depend on some special structure of the matrix. In this talk, we propose an empirical likelihood method to test for the structures and equality of covariance matrices by simply splitting the data into two groups. It is
shown that the asymptotic distribution of the new test is independent of the dimension, and is more powerful than many known tests in the literature. Simulations will also be reported to illustrate the performance of the proposed method.
邀请人:刘展