欢迎来到:英国立博官网中文版!

学术报告
当前位置: 网站首页 > 学术报告 > 正文
On the equivalence of several classes of quaternary sequences with Optimal autocorrelation and length 2p
作者:      发布时间:2020-07-02       点击数:
报告时间 2020年07月05日15:00 报告地点 腾讯会议(会议ID:313694618)
报告人 柯品惠(福建师范大学)

报告名称:On the equivalence of several classes of quaternary sequences with Optimal autocorrelation and length 2p

主办单位:英国立博官网中文版

报告专家:柯品惠

专家所在单位:福建师范大学

报告时间:2020年07月05日15:00

报告地点:腾讯会议(会议ID:313 694 618)

专家简介:柯品惠,福建师范大学数学与信息学院教授、博导,中国密码学会会员,福建省教育学会数学教学委员会常务理事、副秘书长。主要研究兴趣主要在于现代密码学中的布尔函数的研究、最佳信号设计(序列设计),先后发表学术论文70余篇。担任《IEEE Tran. on Information Theory》,《Information Sciences》,《Journal of Electronics (China)》,《IEICE Trans. on Fundermental》,《Journal of Computational and Applied Mathematical》,《Advances in Mathematics of Communications (AMC)》,《IEEE Access》,《中国科学》,《电子学报》,《通信学报》,《工程数学学报》等刊物的评审。主持和参与国家自然科学基金、福建省自然科学基金、福建省科技厅专项、福建省教育厅科技项目等共计10余项。

报告摘要:Quaternary sequences with optimal auto-correlation property are preferred in applications. Cyclotomic classes of order 4 are widely used in the constructions of quaternary sequences due to the convenience of defining a quaternary sequence with the cyclotomic classes of order 4 as its support set. Recently, several classes of optimal quaternary sequences of period 2p, which are all closely related to the cyclotomic classes of order 4 with respect to certain ring were introduced in the literature. However, less attention has been paid to the equivalence between these known results. In this talk, we introduce the unified form of this kind of quaternary sequence to classify these known results and then conclude the unified forms of these optimal quaternary sequences. By doing this, we disclose the relationship between the optimal quaternary sequences derived from different methods in the literature on one hand. And on the other hand, when the new obtained optimal quaternary sequence period is 2p and the cyclotomic classes of order 4 are involved, the methods and the results given in this paper can be used to identify if the sequence is new or not.

邀请人:孙志敏


版权所有© 英国立博官网中文版 - 英国立博中文版官网 2014

地址:湖北省武汉市武昌区友谊大道368号 邮政编码:430062

Email:stxy@hubu.edu.cn 电话:027-88662127