欢迎来到:英国立博官网中文版!

学术报告
当前位置: 网站首页 > 学术报告 > 正文
Morse Index and Willmore Stability of Minimal Surfaces in Spheres
作者:      发布时间:2018-05-29       点击数:
报告时间 2018年5月30日15:00-16:00 报告地点 英国立博官网中文版203会议室
报告人 王鹏(同济大学)

题目:Morse Index and Willmore Stability of Minimal Surfaces in Spheres

报告人:王鹏(同济大学)

报告时间:星期三(5月30日)下午3:00-4:00

地点:英国立博官网中文版203室

摘要:We aim at the Willlmore conjecture in higher co-dimension. It is natural to ask whether the Clifford torus is Willmore stable when the co-dimension increases and whether there are other Willmore stable tori or not.

We answer these problems for minimal surfaces in $S^n$, by showing that the Clifford torus in $S^3$ and the equilateral Itoh--Montiel--Ros torus in $S^5$ are the only Willmore stable minimal tori in arbitrary higher co-dimension. Moreover, the Clifford torus is the only minimal torus (locally) minimizing the Willmore energy in arbitrary higher codimension. And the equilateral Itoh--Montiel--Ros torus is a constrained-Willmore (local) minimizer, but not a Willmore (local) minimizer.

We also generalize Urbano's Theorem to minimal tori in $S^4$ by showing that a minimal torus in $S^4$ has index at least $6$ and the equality holds if and only if it is the Clifford torus. This is a joint work with Prof. Rob Kusner (UMass Amherst).

报告人简介:王鹏,同济大学数学科学学院教授,2008年博士毕业于北京大学数学科学学院,研究领域为微分几何,主要研究Willmore曲面和极小曲面的几何与分析性质,在《Journal of Differential Geometry》和《Advances in Mathematics》等杂志上发表多篇文章。


版权所有© 英国立博官网中文版 - 英国立博中文版官网 2014

地址:湖北省武汉市武昌区友谊大道368号 邮政编码:430062

Email:stxy@hubu.edu.cn 电话:027-88662127