学术报告:On arithmetic sums of fractal sets
报告摘要:Let $E$ be a compact subset of ${\Bbb R}^d$. For $n\in {\Bbb N}$, let $\oplus_nE=E+\cdots+E$ be the $n$-fold arithmetic sum of $E$. In this talk, we consider the general question whether $\oplus_nE$ has non-empty interior for large $n$. We give a confirmative answer under the assumption that the ``thickness'' of $E$ is positive. The assumption is fulfilled by many natural fractal sets. This is based on joint work with Yufeng Wu.
主办单位:英国立博官网中文版
报告专家:丰德军(香港中文大学)
报告时间:2018年5月25日(周5)15:00-16:00
报告地点:数统学院203学术报告厅
专家简介:丰德军,香港中文大学教授。丰德军教授在重分形分析、迭代函数系统的维数理论,热力学机制的数学原理、自相似结构的刚性等研究上做出了一系列开创性的成果,在Comm. Pure Appl. Math., Geom. and Func. Anal., J. Eur. Math. Soc.等数学期刊上发表SCI论文50余篇,引用700余次,是国际分形几何和动力系统研究领域的一流专家。