学术报告:A potential theory for the k-curvature equations
主办单位:英国立博官网中文版
报告专家:周斌副教授
报告时间:2016年12月17日(周六)上午9:00—10:00
报告地点:数统学院201学术报告厅
专家简介:周斌,北京大学数学学院副教授。2010年于北京大学和澳洲国立大学获得理学博士学位,2012.7至2016.4担任澳洲国立大学数学中心研究员。近年来主持自然科学基金项目2项,参与国家自然科学基金重点项目1项。在《Advances in Mathematics》,《Journal of Differential Equations》,《Calculus of Variations and PDE》,《International Mathematical Research Notices》等国际学术刊物上发表论文10余篇,其中被SCI收录11篇。目前主要研究兴趣为微分几何与完全非线性偏微分方程。
报告摘要:In this talk, we will introduce a potential theory for Weingarten curvature (or k-curvature) equation, which can also be seen as a PDE approach to curvature measures. In the case of k=1, we extend the mean curvature measure to signed measures. The related prescribed mean curvature equation will be solved. When k>1, we assign a measure to a bounded, upper semicontinuous function which is strictly subharmonic with respect to the k-curvature operator, and establish the weak continuity of the measure.
|