报告题目:From lattice points to eigenvalue counting 报告摘要:Let $Omega$ be a planar domain, viewed as a“drumhead”of a drum. A natural question is: how many pure tones with frequencies lower than $r$ can this drum make? It turns out that this problem is related to the famous Gauss circle problem: Let $D_r$ be the disc in the plane with radius $r$. How many integer points are there in $D_r$ as $r$ goes to infinity? In this talk I will discuss some known results on these two problems, with an emphasis on the relation between them. 报告时间:2016年11月22日14:00-15:00 报告地点:数统学院201学术报告厅 专家简介:王作勤,中国科学技术大学数学学院教授。2008年于美国麻省理工学院获得博士学位,之后先后在美国霍普金斯大学以及密西根大学工作。中国科学技术大学担任教授、博导。主要研究兴趣为谱几何、辛几何、半经典微局部分析。主要研究结果发表在《J. Differential Geometry》、《J. Functional Analysis》等国内外学术刊物上。 |