欢迎来到:英国立博官网中文版!

学术报告
当前位置: 网站首页 > 学术报告 > 正文
High-dimensional robust inference for censored linear models
作者:      发布时间:2023-06-12       点击数:
报告时间 2023年6月14日15:00-18:00 报告地点 腾讯会议(会议ID:614652432)
报告人 吴远山

报告名称:High-dimensional robust inference for censored linear models

报告专家:吴远山教授

专家所在单位:中南财经政法大学统计与数学学院

报告时间:202361415:00-18:00

报告地点: 腾讯会议(会议ID614652432



专家简介:吴远山,中南财经政法大学统计与数学学院教授、博士生导师。主要从事高维统计理论与方法、生存分析等相关问题的研究,主持多项国家级和省部级科研项目,在统计学主流学术期刊发表论文30余篇。



报告摘要:Due to the directly statistical interpretation, censored linear regression offers a valuable complement to the Cox proportional hazards regression in survival analysis. Existing work on high-dimensional inference often requires stringent assumptions, such as the independence of censoring time between survival time and covariate or the moment condition of model error, perhaps making some practical applications restrictive. We propose a rank-based high-dimensional inference for censored linear regression. Its validity is guaranteed under a more general and realistic censoring mechanism that survival and censoring times are conditionally independent given covariate and without imposing any moment condition on the model error. We develop theory of high-dimensional U-statistic, circumvent challenges stemming from the non-smoothness of loss function, and establish convergence rate of regularized estimator and asymptotic normality of the resulting de-biased estimator as well as consistency of the asymptotic variance estimation. As censoring can be viewed as a manner of trimming, it thereby strengthens the robustness of our proposed rank-based high-dimensional inference, particularly for heavy-tailed model error or outlier in the presence of response. We evaluate the finite-sample performance of the proposed method via extensive simulation studies and demonstrate its utility by applying it to a subcohort study from The Cancer Genome Atlas (TCGA).



版权所有© 英国立博官网中文版 - 英国立博中文版官网 2014

地址:湖北省武汉市武昌区友谊大道368号 邮政编码:430062

Email:stxy@hubu.edu.cn 电话:027-88662127