报告名称:Riemannian metrics with prescribed finite parts of spectrum
报告专家: 王作勤
专家所在单位:中国科学技术大学
报告时间:2023年4月3日 14:20-17:20
报告地点:数统学院203会议室
专家简介:
王作勤,中国科学技术大学数学科学学院教授,博士生导师,曾入选国家高层次青年人才计划。主要研究领域是微分几何与半经典微局部分析,特别是欧氏空间以及黎曼流形上Laplace型算子的谱分布与背景空间的几何/分析/动力系统性质之间的关系,工作发表在GAFA.,JDG.,JFA, CVPDE, Indag. Math, Inverse Probl.等国际高水平数学期刊上。
窗体底端
报告摘要:
In 1980s Colin de Verdiere proved that on any closed manifold of dimension at least 3, one can construct a smooth metric with arbitrarily prescribed finite parts of eigenvalues. Later on Lohkamp showed that one can further prescribe the volume. In this talk, I will survey related known results and will explain how to extend their results to Dirichlet eigenvalues on manifolds with boundary. This is based on an ongoing joint work with He Xiang.